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Plant domestication, introduction of non-native crop plants and insect invasion to
new habitats has greatly shaped the evolutionary history of many phytophagous insect

species by providing new niches to explore.’
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Leaf herbivore

Wild plant

Cultivated plant

TKim and McPheron 1993



Plant domestication provides new niches as this process involves tradeoffs among
human-desired characteristics and plant defenses’2 - aka the domestication

syndrome3s4

Breeding may facilitate insect adaptation

The western corn rootworm - Diabrotica virgifera virgifera

Original range expanded with
maize domestication in Mexico

Later with the intense
maize cropping in the US

Grat et al. 2009

1Chen et al. 2015; 2Mitchell et al. 2016; 3Hammer 1984; 4Gross and Olsen 2010



The introduction of domesticated plants to novel areas provides new niches, leading to
adaptation, host shifting and subsequent host-associated differentiation (HAD) by native
Insects.

The apple maggot - Rhagoletis pomonella

Shifted from its original host-plant: hawthorn (Crataegus spp. mollis)

160 years ago - introduction of apple (Malus domestica)
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Sugarcane borer Diatraea saccharalis




North - South America

Center of Origin: South/Central America

= Delta of Orinoco river
Venezuela flat lands,
Lakes of great Antilles

Original Host-plant:
Aquatic and semi-aquatic

Delta del Orinoco

Widespread South America

following European colonization
Domestication / spread of maize

Introduction of sugarcane



Sugarcane in Brazil
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Maize in Brazil - before 1990
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Maize in Brazil - after 1990

Corn-Growing Seasons in Brazil
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Maize in Brazil - after 1990
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Agricultural season
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Changes in Brazilian agriculture likely impacted insect pest evolutionary genetics;
however, this is not completely understood.

We posit that the evolution of sugarcane borer is associated with the changes in
the Brazilian landscape from historical and modern agricultural activity

We hypothesized that the modification of large areas of sugarcane during
Portuguese colonization facilitated a host shift to sugarcane, whereas more
recent agricultural expansion of maize and sugarcane production have provided
sufficient evolutionary pressure leading to population structure and HAD
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Genetic structure
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Host Plant
.Saccharum spp.
. Sorghum bicolor
OZea mays mays

Partial Mantel test
Causal modeling!

Model r2 p-value

pFST ~ host | geo dist 0.279 0.026

pFST ~ geo dist | host -0.004 0.475

' 2.000 Km

Fonte: NIPE-Unicamp, IBGE e CTC

Incipient HRA - Ecological divergence
1) Ancestral signal of association;

2) Recent HRA

1Cushman et al. 2006; Castillo et al. 2014



Population size changes
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Population size changes
Test the time for Ne changes:

(1) changes imposed by modern agricultural practices in the last 60 years;
(2) changes =60-500 years ago;

(3) ancestral population
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Genetic of SCB and agricultural system
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Historical introduction of sugarcane production along with the more recent expansion
of maize and sugarcane fields, impacted the genetic diversity and evolutionary

dynamics of the sugarcane borer in Brazil:

demographic events (bottleneck followed by an expansion) coincided with known

agricultural events in Brazil

We also observed signals of incipient divergence among hosts (sugarcane and

maize).



Winter survival mechanisms and adaptive genetic variation in an Antarctic insect
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Antarctic midge, Belgica antarctica

Antarctic midge, B. antarctica is an endemic insect species of the
Antarctica. This is a wingless and terrestrial species of :
Chironomidae family (Diptera). This species developed several \

physiological adaptations to cold and dry conditions found at
Antarctica environment.

Model to study adaptation to extreme conditions and the response
to climate changes.



Main Project Goal:

This project focuses on deciphering the physiological and molecular mechanisms that enable
the Antarctic midge Belgica antarctica to survive environmental stress and the loss of most of its

body water in the desiccating polar environment.

1) Evaluating the role of aquaporins (water channel proteins) in the rapid removal of water from the
body by studying expression of their genes during dehydration;

2) Investigating the mechanism of metabolic depression and the role of autophagy (controlled
breakdown of cellular components) as a mediator of stress tolerance by studying expression of
the genes responsible for autophagy during the dehydration process; and

3) Evaluating the population structure, gene flow, and adaptive variation in physiological
traits associated with stress tolerance using a genetic approach that takes advantage of
the genomic sequence available for this species coupled with physiological and
environmental data from the sampled populations and their habitats.

Targeted Sequencing

v National Science Foundation
WHERE DISCOVERIES BEGIN




Targeted Sequencing
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Targeted enrichment method - PCR based

- Discovery and isolate informative SNPs for the genotype of Antarctic midges populations;

- Develop a pipeline to automate the processing of the sequencing data;

Whole Genome Sequencing Data

\ 4

Discovered SNPs

\ 4

Targeted SNPs

\ 4

Fluidigm panel (double PCR protocol)



Latitude
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Framework to isolate informative SNPs
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In silico comparisons
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In silico comparisons
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In silico comparisons
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PCR-based Target Enrichment - Fluidigm

Target-Specific Primer

forward reverse

Universal Tag (forward)VTSPF) (TSPR)
‘EREN EREN
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Pipeline for processing Amplicon data - PypeAmplicon
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Challenges and future work

- Demographic Inference: WGS and amplicon data;

- Population Genomics
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Determination of the inheritance and SNP markers associated with the

virulence of soybean aphids on soybean

Doris Lagos-Kutz and Glen Hartman - University of lllinois
Anitha Chirumamilla - South Dakota State University
Andrew P. Michel - The Ohio State University




Most important pest of soybean (Glycine max) in USA1:2

Disrupt the photosynthetic process — even with low population densities?

Vector of plant viruses?

THeimpel et al. 2010; 2Ragsdale et al. 2007; 3SMacedo et al. 2003; 4Davis et al. 2005



Soybean Aphid - Aphis glycines
- Invasive species from Asia’
- It was first detected in North America in July 200023

- It rapidly spread across 10 northcentral US states* (end of the summer same year);

- Primary host: common buckthorn - introduced from northern Europe;

- Secondary host: soybean

Ragsdalg et al. Annu. Rgev. Entomol. 2011. 56:375-99 y

' B 2000
2001-2009

Venette & Ragsdale 2004; 2Ragsdale et al. 2004; 3Alleman; 4Ragsdale et al. 2011



SBA Reproduction and Ecology

[relevant to obtain mapping population]

Fundatrices

Soybean Aphids - . :
Life Cycle Heteroecious and holocyclic species
\%@"‘"ﬂ'ﬂmm‘e . Sexual reproduction on primary host

[buckthorn trees]

inced pemle - Asexual reproduction on secondary

TR

Soybean Aphids .
on Soybean

Soybean Aphids
on Buckhorn

Sexual Winged Female
(Fall Migrant)

Sexual Female migrate
Buckhorn

Sexual Female and Male

Common buckthorn (Rhamnus cathartica)



Management:
- Insecticides;

- Natural Enemies

- Host-plant Resistance (HPR) to SBA'

Other parasitoids
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Several varieties and plant introductions (Pls) had been identified as been resistant to SBA:
- antibiosis;
- antixenosis;

- tolerance as mechanisms of resistance

“Rag” genes:

8 genes have been identified — HPR phenotypes

Jackson and Dowling varieties - resistant via antibiosis
Pl 71506 - resistant via antixenosis?

Resistance in Jackson and Dowling:
1 single dominant gene Rag1 - mapped linkage group M23

Resistance Pl 243540:
1 single dominant gene Rag2 - mapped linkage group F4

THill & Hartman 2004; 2Hill & Hartman 2006a; 3Hill & Hartman 2006b; 4Mian et al. 2008.



Aphids adapted to the HPR1:

As early as 2005 aphids were observed that overcame resistance (i.e. virulent)

1TKim et al. 2008

15 days after
infestation
Res. Lines OH
Dowling (Rag1) 15 639
Jackson (Rag1?) 11 414
LD05-16611 29 627
Suscept. Lines
Dwight 468 398
Williams 82 726 574
Biotypes Ragl Ragl/Rag2
Biotypel
Biotype 2 Virulent
Biotype 3 Virulent
Biotype 4 Virulent Virulent Virulent




Finding the underlying genetic basis of SBA virulence
(if it is genetic)

- Comparative Genome Scan - PoolSeq (Wenger et al. in preparation):
- 84 SNPs;

- Differential gene expression analysis (Yates et al in preparation):
- Constitutive differences between Biotype 1 and Biotype 4.

= Genetic-Phenotype Association - QTL mapping



Mapping population: F2 intercross

Parental1 AA X aa Parental 2

Biotype 1 l Biotype 2
F1 Aa Fundatrices
\) New colony
® Parthenogenesis
(“cloning”)

v
F2 1AA : 2Aa: 1aa Fundatrices

cloning

Phenotyping «
v
Genotyping



Phenotypic data

Williams 82 Rag 1 Phenotype
Avirulent 1 0 0
Virulent 1 1 1
Fundatrices F2’s (B1xB2) Fundatrices F2’s (B2xB1)
1 2 3 1 2 3
Williams 82 Rag 1 Williams 82 Rag 1
(susceptible) (resistant) (susceptible) (resistant)

OB1 x JB2 OB2 x JB1
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Marker discovery - panel design - Genotypic data

WGS of biotype pools
(B1, B2 and B3)

\ 4

Reference-based SNP calling
First draft of the genome (Wenger et al 2017)

X

Biotype 1 Biotype 2
“Parental” “Parental”
T/T
AA G/G
G/G C/C
) A/A
Fundatrices
F1
T/G
A/C
e l ®
Fundatrices
F2

1.T/T; 2:T/G; 1:G/G
1:A/A; 2:A/C; 1:C/C
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Mapping

LOG (above diag.} and Recombinalion Fraction Malrix T 71 71 T
01 0z 04 08 16 33 BB 134 042 1 T —+
L | | | | | | | | | 1 x
10 I Tr. .- % _ _______1l____
— 0.50 3 1 T
- 0.44 20 ***********Ef ********* i I
~ 0.39 3 T *
° s
=
— 0.33 3 30 - s
o 1 i
- 0.28 o
- 022 40 - ——— e
= 017 T -
~ 011 LTI e =
— 0.06 T
— 0.00
rec. frac. o N © ;e
8 8 8 8
¢ ) o 0]
2.0 H
1.5
e}
o
1.0
0.5 —
0.0
1 \lH\ [ LI | : L Ll I‘ LIl [ I\H LI
1 2 3 4

Chromosome




Challenges and future work

High percentage of targeted and non-targeted markers with segregation distortion

Inconsistency in the genotypic data of F1

- Reduced heterozygosity in parental lines;
- Not account for variation in the analysis of pool data;

- Reproductive isolation between biotypes (or partial Rl as indicate the SG data);
- Symbionts (Wolbachia);

- Incompatibility - Hybridization / Introgression with other aphid species



Tracking selection in time-series population genomic
data using ABC random forests
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Genetic relationship of biotypes

Table 1. Hypotheses proposed through the Diehl and Bush (1984) framework with predicted population level patterns for each.

Predicted population level responses

Diehl & Bush
categories Hypothesis Gene flow  Structure Genotypic diversity
Nongenetic Biotypic differences are not genetic Ubiquitous  No structure Little to no deviation between
in origin, but are likely associated biotypes. Shared *MLGs common
with phenotypic plasticity,
environmental effects, and
endosymbionts
Ubiquitous genetic  Biotypes are the product of adaptive Ubiquitous  No structure Limited deviation between biotypes if
genetic variation, but gene flow is monogenic. None if polygenic
uninhibited. Biotypic traits subject to
population level drift and selection
Geographic race Biotypes are geographically separate Restricted  Strong structure by Deviation in richness between biotypes.
during sexual stages, limiting gene biotype and geographic ~ Few Shared MLGs
flow. Biotypes evolved via gradient
geographic isolation
Host race Biotypes associate with different primary ~ Restricted  Structure between Deviation in richness between biotypes.
hosts causing near sexual isolation biotypes and Few Shared MLGs
and divergent evolutionary trajectories primary host
Species Biotypes are indicative of separate None Strong structure by Genotypes significantly divergent,
species that share no gene flow biotype populations few or no MLG shared between biotypes
*MLG, multilocus genotype.
s ¢ ¢ ¢ o o o
=
s
-]
e o
¢ ¢ o o
= ]
Biotype 1 Biotype 2

Figure 1 Geographic location of collections. Abbreviations and GPS
coordinates available in Table 2.

Diehl & Bush 1984; Wenger & Michel 2013
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Axis 2 - 24.28% of Variation
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Table 5. Predicted patterns of gene flow, population structure, and genotypic diversity per Diehl & Bush (1984) category and sub-category. Catego-
ries in bold are consistent with data in the present study.

Diehl & Bush category Sub-category Genetic differentiation Population structure Genotypic diversity
Nongenetic Endosymbiont Between biotype Minor structure biotype Biotype 2 less diverse
or geography
Nongenetic Phenotypic None No clustering or by No significant difference
Plasticity geography between biotypes
Ubiquitous genetic Gene for Gene None Minor structure biotype Biotype 2 less diverse
or geography
Ubiquitous genetic Epistasis None No clustering or by No significant difference
geography between biotypes
Geographic race N/A Strong between biotype Cluster by biotype Sig Dif in diversity
Host race N/A Strong between biotype Cluster by biotype Significant difference in diversity
Species N/A Strong between biotype Cluster by biotype Significant difference in diversity




Threshold Model

Number of Genes Contributing to a Single Trait ® Dominant Trait © Recessive Trait
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